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Abstract

This work presents a novel framework for Visual Localiza-
tion (VL), that is, regressing camera rays from query images
to derive camera poses. As an overparameterized represen-
tation of the camera pose, camera rays possess superior
robustness in optimization. Of particular importance, Cam-
era Ray Regression (CRR) is privacy-preserving, rendering
it a viable VL approach for real-world applications. Thus,
we introduce DINO-based Multi-Mappers, coined DIMM,
to achieve VL by CRR. DIMM utilizes DINO as a scene-
agnostic encoder to obtain powerful features from images.
To mitigate ambiguity, the features integrate both local and
global perception, as well as potential geometric constraint.
Then, a scene-specific mapper head regresses camera rays
from these features. It incorporates a semantic attention
module for soft fusion of multiple mappers, utilizing the rich
semantic information in DINO features. In extensive exper-
iments on both indoor and outdoor datasets, our methods
showcase impressive performance, revealing a promising
direction for advancements in VL.

1. Introduction

Visual Localization (VL) involves estimating 6-degree-of-
freedom camera pose of an image taken from a known scene,
which is also known as camera relocalization. VL plays a
vital role in many vision, robotic and graphic applications,
such as augment reality, virtual reality and autonomous driv-
ing. Despite extensive research, achieving precise, robust,
and privacy-preserving VL [28, 38] continues to present a
significant challenge.

Current VL methods can be categorized into explicit and
implicit methods based on their mapping approaches. Tra-
ditional explicit methods [2, 30, 31] involve an explicit 3D
map, e.g., point clouds. They establish 2D-3D (image-to-
map) correspondences by Feature Matching, and then esti-
mate camera pose via PnP and RANSAC [10, 12]. While
advanced methods [11, 39] leads to high accuracy, the stor-
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Figure 1. The ambiguity challenge in Camera Ray Regression
(CRR) for VL. Effective global and local disambiguations are criti-
cal for CRR. Global ambiguity arises from rays of different patches
(cf. r3 and 73 in the figure), while local ambiguity occurs within
the same patch but from different viewing angles (cf. r}and r3).
Semantic information, e.g., the table in the figure to differentiate
between chairs, along with geometry constraints (geometry proper-
ties of rays {r% };) are essential for the disambiguations.

age demands of explicit maps are troublesome especially in
large-scale scenes. Additionally, explicit maps raise privacy
concerns, restricting their applications in real-world settings.

Implicit methods, on the other hand, leverage learning
models as implicit and light-weight maps, which mainly in-
clude two frameworks: Absolute Pose Regression (APR)
and Scene Coordinate Regression (SCR). APR directly uti-
lizes networks to regress camera poses (rotations and transla-
tions) from images [6, 15], offering enhanced privacy protec-
tion. However, the compact nature of absolute pose makes it
vulnerable to noise, thereby leading to accuracy issue [6].

To improve precision, employing an overparameterized
representation for the camera pose is crucial [35]. Thus,
SCR framework [22, 41] is proposed, relying on 2D-3D
matches as an indirect yet robust camera pose representa-
tion, akin to its explicit counterparts. ACE [4] is a milestone
within this framework, utilizing simple networks to regress
pixel-aligned scene coordinates. It introduces a scene-centric
patch-level training strategy, i.e., Gradient Decorrelation
Training (GDT), enabling both efficient and precise map-
ping. Nevertheless, the unbounded 3D point error is unstable
in training, necessitating manual hyperparameter tuning or
additional outlier rejection modules [5, 20]. Besides, SCR
methods still run the risk of 3D privacy breaches, as they
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Figure 2. The proposed DIMM approach performing CRR
for VL. This approach utilizes DINO as a scene-agnostic feature
encoder to output carefully designed patch-level features. Then, a
scene-specific mapper head integrates multi-mapper results under
semantic guidance, through a semantic attention module. After the
scene-centric training technology, DIMM is capable of predicting
camera ray parameters for accurate and privacy-preserving VL.

disclose detailed 3D scene information [29].

Recently, a promising camera pose representation, camera
ray [27, 35], has garnered increased attention in the vision
field. Its overparameterization is beneficial for patch-level
learning [23, 44], aligning well with the effective GDT in
VL. This inspires us to introduce camera rays in the VL
tasks. In particular, we propose adopting a learning model
to regress patch-level camera rays from the image, termed
as Camera Ray Regression (CRR). Then, the camera pose
can be achieved by solving two linear problems [44]. This
implementation of VL could strike a balance between ef-
ficacy and privacy preservation. Firstly, it belongs to the
implicit mapping category, incurring low storage costs. As a
overparameterized pose representation, it can yield improved
precision [35] than APR. Also, the ray error is more stable
than the unbounded 3D point error [27] in optimization of
model training. Hence, CRR obviates the need for intricate
training setting like SCR methods [5, 20, 41]. More impor-
tantly, it is hard to recover 3D scene information from camera
rays, leading to a privacy-preserving VL implementation.

However, challenges exist in introducing camera rays in
VL, primarily stemming from the issue of ambiguity (cf.
Fig. 1). This ambiguity can generally be divided into two
levels. The first is global ambiguity, referring to distinguish
rays of different image patches, particularly in repetitive or
textureless scenes. The similar ambiguity is encountered
in SCR [4, 41], where leveraging powerful local features,
such as semantic features [20], has proven effective. The
second is local ambiguity, unique to CRR, which involves
differentiating rays from the same image patch with dif-
ferent view angles. The ambiguity becomes troublesome
for patches with continuous depth, where changes in view
direction result in minor differences in patch content but
obvious variations in the corresponding rays. To eliminate
this ambiguity, we emphasize two observations on the CRR
task. 1) The entire image often contains patches with depth
discontinuities. Their appearance changes under different

viewing angles are significant enough to resolve the local am-
biguity. Thus, the image-level perception is important for
CRR disambiguation, which is also proven to be beneficial
for handling global repetitiveness [41]. 2) The rays within
the same image are governed by the same camera pose.
This geometric constraint allows confident rays to correct
uncertain ones. Meanwhile, the smoothness of the patch-
ray mapping [44] makes this geometric constraint learnable.
Therefore, the integration of image-level perception, geo-
metric constraint and robust local features is critical for
the global and local disambiguation of CRR.

Based on the above analysis, this work presents DINO-
based Multi-Mappers (DIMM, Fig. 2), as the first implemen-
tation of CRR in VL. Following the scene-centric design
of ACE, DIMM consists of a scene-agnostic encoder and
a scene-specific head, but possessing several key modules
tailed for CRR. Specifically, we utilize DINO [8] as the
feature encoder, utilizing its powerful semantic perception
for disambiguation. It provides robust patch tokens as lo-
cal features while supporting CLS tokens for image-level
perception. We further incorporate Fourier Encoding [24]
of the image position for each patch into the features (XY
tokens), as the potential geometric constraint of camera
rays are associated with patch locations. Furthermore, we
propose a scene-specific mapper head which adopts a se-
mantic attention module to softly fuse ray regression results
from multiple Multi-Layer Perceptron (MLP)-based map-
pers. This head effectively utilizes the inherit semantic prior
of the DINO features, to enhance ray regression performance
especially in large scenes. Finally, we propose a ray-level
RANSAC algorithm for accurate pose estimation, decom-
posing the rotation and translation calculation [44].

Our contributions are summaries as follows.

1. To the best of our knowledge, we are the first to introduce
the camera ray into VL, with a tailored network design to
achieve query image poses by camera ray regression.

2. We propose carefully designed scene-agnostic features
to handle local and global disambiguation in CRR, along
with a semantic-guided mapper head that enables a soft
multi-mapper ensemble.

3. Comprehensive experiments on indoor and outdoor
datasets demonstrate the effectiveness of our method,
achieving results that rival or surpass the existing state-of-
the-art. Additionally, extensive ablation studies validate
the contributions of each module.

2. Related Work

Feature Matching-based VL. Traditional VL methods [30,
32, 33] rely on Feature Matching (FM) to determine the
position and direction of cameras. These techniques aim
to match 3D scene points with 2D image points, enabling
the camera pose calculation through PnP+RANSAC-based
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Figure 3. The Multi-Mapper network with semantic attention as our scene-specific head. The patch-level features are first projected to
geometry and semantic embeddings. The geometry embedding is fed into multiple MLP-based mappers to derive ray embeddings. These
embeddings are then fused under the guidance of the semantic embedding to achieve the camera rays, through cross attention modules.

algorithms [10, 12]. As a result, these approaches necessi-
tate the storage of explicit maps containing 3D points and
their feature descriptors. By leveraging robust matching
algorithms [11, 19, 39, 42, 45], FM-based localization can
deliver precise outcomes. Nevertheless, explicit maps raises
concerns about privacy leaks [28]. Furthermore, as the scene
size expands, managing the increasingly large explicit maps
becomes challenging, leading to storage issues. In contrast,
our method employs implicit maps that have lower storage
requirements and privacy protection.

Scene Coordinate Regression. Similar to FM-based VL,
Scene Coordinate Regression (SCR) also accomplishes cam-
era poses through 3D-2D matching [3]. However, SCR
directly employs network to regress pixel-aligned 3D scene
coordinates, which addresses the map storage issue through
implicit mapping. ACE [4], a prominent approach within
SCR, introduces a gradient decorrelation training technique
enabling mapping within 5 minutes using a 4MB network.
Subsequent methods [5, 14, 20, 22, 41] built upon ACE fur-
ther enhance VL accuracy mainly by solid feature selection.
Nevertheless, the limited network size of ACE pose chal-
lenges in fitting large scenes, necessitating spatial segmenta-
tion of the large scene for sub-map construction. Despite its
efficacy, this approach may result in ambiguous localization
at the boundaries of segmented sub-scenes. At the same
time, it is noteworthy that the SCR methods output the 3D
information of scenes, i.e., 3D coordinates, thereby leading
to a potential risk of privacy leak.

Absolute Pose Regression. Absolute Pose Regression
(APR) also adopts implicit mapping, but directly utilizes
networks to predict the rotation and translation of cameras.
However, this compact parameter representation of camera
pose is highly sensitive to noises [12, 44]. Regressing pose
parameters from images, thus, is challenging [15—17, 36],
and the accuracy is insufficient to compare with methods
using over-parameterized representations, e.g., 2D-3D cor-
respondences. Recent APR approach [6] opts to predict
the camera pose based on the SCR output, resulting in fa-
vorable accuracy. However, this success is heavily reliant

on the precision of SCR methods. In contrast, our method
employs camera rays to depict the camera pose. This over-
parameterized representation is more conducive to learning
optimization [25, 27, 44], enabling superior accuracy.
Camera Ray in Vision. Recently, camera rays have
emerged as a promising camera parametrization, repre-
senting a generic camera configuration [35]. In recent
work [23, 43, 44], camera rays have been proven to be well-
suited for patch-level learning, with applications in multiple
vision tasks. Also, in 3D reconstruction works [25, 27],
camera rays yield more robust geometric optimization than
classical correspondence-based representations, e.g., 3D-2D
matches. This advantage stems from their overparameterized
nature and constrained ray error. Likewise, our approach is
the first to introduce camera rays in VL, performing Camera
Ray Regression (CRR) to achieve camera poses from images.
Its patch-level property aligns well with the Gradient Decel-
eration Training [4], and the bounded ray error is beneficial
for optimization in VL Learning as well. Furthermore, the
inherent privacy-preserving attribute of CRR positions it as
a promising direction for VL implementations.

3. Method

In this section, we first present the formulation of CRR
for the VL task in Sec. 3.1. Then the proposed DIMM
method is described in detail. DIMM adopts a scene-
centric setup [4, 14, 41] by dividing the network into a
scene-agnostic encoder (Sec. 3.2) and a scene-specific head
(Sec. 3.3). Additionally, the mapping process incorporates
GDT [4] and utilizes a specially designed loss function
(Sec. 3.4). To further enhance accuracy, we propose a
RANSAC-based algorithm for estimating camera pose from
rays in Sec. 3.5 .

3.1. Problem Formulation

Employing CRR for VL involves two main steps: 1) regress-
ing the patch-level camera ray parameters from the input
image and 2) calculating the camera pose from the ray pa-
rameters. Given an input image I € RF>XWXC it is first
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divided uniformly into a set of patches (p;) of size s x s:
{pi € RXOHL, (1

where N = HW /s?. Subsequently, the model F regresses
the ray parameters corresponding to the center points of
image patches, expressed in the world coordinate system,
7% = {7"1‘ € Rﬁ}g\;l.

R =F(I), )

where the ray parameters are expressed in Pliicker coordi-
nates [12]: r; = [d;, m;], where d; € R3 denotes the ray
direction and m; € R3? represents the ray moment. Upon
obtaining sufficient rays (> 2), the camera pose can be ac-
quired by solving two distinct linear problems corresponding
to rotation and translation, respectively [44].

Firstly, in terms of rotation, given the camera intrinsic, the
Pliicker coordinates of all camera rays in the camera coor-
dinate system can be achieved, denoted as {r¢ = [d¢, 0]} .
The rotation matrix R, thus, corresponds to the transforma-
tion from the ray directions in the camera coordinate system
to those in the world coordinate system:

R = arg min Rd§ — di|3. 3)
gHRHﬂXi:II |2

Subsequently, the translation, also known as the world posi-
tion of the camera optical center denoted as ¢, is determined.
Since c is the intersection point of all camera rays, the opti-
mization problem can be formulated as:

é:argmcinZchdifmiH%. ()

Through these two linear problems, the camera pose ([R|¢])
can be deduced from the camera rays.

3.2. Feature Encoder

Given the patch-wise independent GDT, it entails that the
scene-specific head must learn the mapping from patch-level
features to ray parameters. To ensure the learnability of this,
ambiguity within patch features, particularly the local am-
biguities, needs to be addressed. Thus, based on our prior
analyze, patch-level features must possess both robust local
representation and image-level perception. Hence, we opt
for DINO [26] as our encoder backbone. From an input im-
age I, it can generate patch-level feature tokens, {pz}f\’ ,and
provide the CLS token for image-level perception. Accord-
ing to prior work [13], fine-tuning DINO’s last two blocks
can effectively enhance the performance of VL tasks. Con-
sequently, we also fine-tune DINO using the ACE Encoder
training method [4], resulting in D.

{T3N, TieLs) = D), )

Algorithm 1 RC-RANSAC Algorithm
Input: R = {[(L, g}V ; # camera rays from DIMM
Output: R € R3*3, ¢ € R3*1; # camera pose
1: Get Rotation by RANSAC: R < R-RANSAC({d;}Y,);
cf. Algorithm 2 of the Suppl.
2: Ray Correction: R « {[Rd¢, |} N
3: Get Camera Center by RANSAC: ¢ < C-RANSAC(R);
cf. Algorithm 3 of the Suppl.

Here, 7; € RP represents the patch token corresponding to
pi locally, TicLs) € RP denotes the CLS token with global
perception, N signifies the number of patches, and D is the
token dimension.

Meanwhile, the geometric constraints of the rays from the
same camera are crucial for eliminating local ambiguities.
Thus, the network must also explicitly specify the spatial
image location of patches during training. To further prevent
the positional feature from being overshadowed by other
dimensions, we draw inspiration from Nerf [24] and enhance
this feature using Fourier Encoding (F'E) [40].

Ty, = FE({zi,y;};) € RN*Pr (©6)

Here, {x;,y;}: represents the positions of image patches
{p;} in the original image, and D is the dimension of the
Fourier encoding, set to 16. Finally, the scene-independent
patch-level feature is a combination of the aforementioned
three features. For each patch p;, we have:

T =T, ® Ticg) ® Tay, € RZPTPF, (N

Here, ® denotes concatenation along the last dimension.
This carefully designed feature to address ambiguity serves
as the foundation of our CRR method.

3.3. Mapper Head

The scene-specific mapper head is responsible for transform-
ing input features to ray parameters in CRR. A powerful fea-
ture encoder allows similar transformations to be achieved
with simple MLPs [4, 14, 22, 41]. However, these mappers
struggles to handle large scenes due to its limited capacity.
To address the issue, spatial clustering is applied to divide
the large scene [4, 41], with multiple MLPs fitting different
sub-scenes independently. While effective, this hard scene
partitioning can lead to ambiguous results near the sub-scene
boundaries. In contrast, we adopt a soft map partitioning.
As its core, we fuse the outputs of multiple sub-mappers
with soft semantic guidance. Through end-to-end training,
the sub-mappers are able to adaptively focus on different
semantic regions. Particularly, we employ two MLP projec-
tion layers (P, and Fy) to first project the input feature into
a geometric embedding 7,7 and a semantic embedding 7;*,
with Dy, hidden dimension respectively.
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Category Method Mapping w/ 3D info. Mapping Time Mapping Size
FM-based  hloc(SP+SG) No 1.5 hours ~2GB
DSAC* Yes 15 hours 28MB
ACE No S minutes 4MB
SCR ACE (x4) No 20 minutes 14MB
EGFS No 12 minutes 4.5MB
EGFS (dual) No 21 minutes 9MB
D2S Yes ~9.4 hours 22 MB
APR marepo No 5 minutes 98.9MB
mareporeplag No ~15 minutes 98.9MB
CRR DIMM (Ours) No ~1 hour 16.2 MB

Table 1. The mapping size and time comparison between VL
methods from different categories. As a new flavor of VL, our
DIMM achieves mapping time and memory size comparable to
other methods while ensuring privacy protection.

TY = Py(T;*) € RP*, ®)

T* = Py(T;*) € RP», ©)

where we omit the indices of the patches for simplification.
Next, the sub-mappers M = {M;}}, composed of M

=1
MLPs with depth D, take the geometric embedding 79 to

obtain M ray embeddings {7, }}Z,.

T/ = M;(T?) € RP~. (10)

Afterwards, in the sequence of L cross attention layers (A =
{A}E |, termed as Semantic Attention), we replicate the
semantic embedding (7,°) M times along the first dimension
to serve as the query q.

{T* M s g € RM*Dn, (11)

All ray embeddings are concatenated along the first dimen-
sion to form both the key and value of the first layer.

T 1 = ko, vg € RM*Pr, (12)

By iteratively updating the key and value through the at-
tention layers, we fuse the results of all sub-mappers by
weighting them using the semantic guidance from DINO.

Ai(q, ki, vr) = vigas ki (13)

The final value is first reshaped: vy € RMxDn _, RMDn,
followed by projection to obtain the ultimate ray embed-
ding: 7/ = Py(vg) € RP». Finally, the ray parameters

# = [d, )] are obtained through a straightforward MLP
projection layer.

P = P.(T}) € RC. (14)

Based on this head, we can achieve the corresponding camera
ray from a patch-level embedding from our feature encoder.

3.4. Training Loss

Adopting the patch-level Gradient Decorrelation Training,
our loss function operates independently between patches.
First, we utilize the L2 distance between the ground truth
(rgT) and predicted rays as the optimization target.

Lo = ||rar — 7|3 (15)

Besides, to enhance the model awareness of geometric con-
straints, we incorporate a center loss L. based on the geomet-
ric properties of camera rays. The principle is any camera
ray passes through a corresponding camera center [12].

Le=|lexd—m|2 (16)

Finally, our patch-level loss function is £ = L3 + aL,,
where « is a balance term, which is empirically set as 0.2.
Our training loss is simple yet effective compared to SCR
methods [4, 14, 22], benefiting from the robustness of rays
in optimization.

3.5. RC-RANSAC

Similar to SCR, it is also not guaranteed that all camera rays
can be accurately predicted in CRR. Therefore, employing
the RANSAC mechanism to eliminate outliers is a benefi-
cial approach. Unlike the PnP solution, when solving for
camera pose from rays, the rotation and translation consti-
tute two linear problems. Hence, the RANSAC process can
be separately applied. Given that the rotation solution is
independent of translation, we introduce the RC-RANSAC
(Algorithm 1) as a modification of the general RANSAC
algorithm. Specifically, after obtaining the predicted camera
rays R = {[d;, i;]}N, we initially use R-RANSAC (cf. Al-
gorithm 2 of the Suppl.) to determine the rotation R from
the ray directions only. Subsequently, all camera rays are
corrected using the obtained rotation matrix Rto get bet-
ter rays: R* = {[RdS,7n;]};. The camera translation ¢ is
then derived from the corrected rays by another C-RANSAC
process (cf. Algorithm 3 of the Suppl.). Ultimately, combin-
ing the rotation and translation yields the final camera pose:
[R, ¢ for VL.

4. Experiments
4.1. Implementation Details

Network Configuration. For the feature encoder D, we
use the dinov2_vitbl4_reg as our backbone, with an
embedding dimension of 768 (D = 768). The frequency of
Fourier Encoding is set as 16, making Dy = 64. On the
other hand, the mapper head consists of 4 sub-mappers and
a semantic attention model with 4 attention layers. Each
sub-mapper has a 4-depth MLP with skip connections. The
first 2 layers form the common mapping, and the other 2
layers output direction and moment embedding respectively
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Indoor-6

Catagor Method scenel scene2a scene3 sceneda scenes scene6 Average

gory (eml/®) (%) | (eml®) (%) (em/®) (%) | (eml®) (%) (eml/®) (%.) (eml/®) (%) (eml®) (%)
FM-based Hloc [30] 3.2/0.5  64.8 -/- 514 | 21/04 810 -/- 69.0 | 6.1/09 427 | 2.1/04 799 -/- 64.8
Hloc+SLD [9] 2.9/04  68.7 | 3.4/0.6 62.7 1.9/0.3  81.0 | 2.8/0.5 739 | 54/0.8 453 | 2.1/04 820 | 3.1/0.5 68.9

APR PoseNet [15] | 159.0/75 0.0 | -/ - | 141093 00 | - | 179.3/94 0.0 | 1182/93 00 | /- -
DSAC* [3] 12.3/2.1 187 | 7.9/0.9 28.0 | 13.1/23 19.7 | 3.7/1.0 60.8 | 40.7/6.7 10.6 | 6.0/1.4 443 | 13.9/24 304
ACE [4] 13.6/2.1 249 | 6.8/0.7 319 | 8.1/1.3 330 | 48/0.9 557 | 147123 179 | 6.1/1.1 455 | 9.0/1.4 348
NBE+SLD(E) [9] | 7.5/1.2 284 | 7.3/0.7 304 | 62/1.3 435 | 4.6/1.0 544 | 63/1.0 375 | 5813 446 | 63/1.1 398
SCR NBE+SLD [9] 6.5/0.9 384 | 7207 327 | 44/09 53.0|38/0.9 665 | 6009 40.0 | 50/1.0 505 ]| 55/0.9 469
EGFS [20] -/- 46.4 -/- 60.6 /- 56.4 -/- 78.7 -/- 22.8 -/- 71.6 -/- 56.1
EGFS-q [20] -/- 58.5 -/- 59.1 -I- 67.0 -/- 76.7 -/- 30.6 -/- 75.9 -/- 61.3
D2S [5] 48/0.8 51.8 | 4.0/04 o61.1 | 3.6/0.7 600 | 2.1/0.5 84.8 | 5.8/0.9 455 | 2.4/0.5 752 | 3.4/0.6 63.1
CRR DIMM 5.5/1.5 444 | 42/08 66.7 | 44/1.1 616 | 2.8/1.0 79.7 | 7.6/1.5 23.6 | 3.3/0.8 783 | 45/1.1 60.7
DIMM-R 55/1.5 452 | 3.3/0.6 774 | 42/1.1 625 | 27/10 81.0 | 63/1.5 330 | 32/08 79.8 | 42/1.1 63.2

Table 2. Localization results on Indoor-6 [9]. We report the median errors in cm for the position, degree (°) for the orientation, and recall at
5¢m/5° of the Indoor-6 dataset. The best results, the second best and our results are highlighted, except for the FM-based method.

BZZ

Ray Regression w/
glob. perception (Ours)

Ray Regression w/o
glob. perception

Figure 4. The qualitative comparison between ray regression w/ or w/o global perception in the scenel of Indoor-6. These results
contain predicted and ground truth rays from the same cameras, along with their camera centers. The samples indicate that ray predictions
w/o global perception (without the CLS and XY tokens, bottom) lack geometric consistency, although some individual rays are accurate. In
contrast, incorporating global perception facilitates learning the geometric constraint of rays, resulting in precise ray regression (top).

(cf. Fig. 3). The hidden dimension Dy, is set as 256. More
ablation experiments can be found in Sec. 4.3.

Training and Hardware Details. Firstly, according to re-
lated work [13], we fine-tune the last two blocks of DINO in
terms of CRR task for better performance. Particularly, we
follow the encoder training protocol of [4] and [13], using
the first 100 training scenes of ScanNet [7] to update the
weights of unfrozen DINO blocks. The training is performed
on 4 NVIDIA A800 GPUs using gradient accumulation [4]
in parallel. Next, the mapper head is trained on 1 NVIDIA
A800 GPU for each scene, with a training buffer of 26M
encoder features. The large buffer size is important for CRR
training, as most of patches have different rays. We observed
a buffer size scaling law in experiments (cf. Suppl. B). We
do 20 passes over the training buffer, utilizing a batch size of
5120. The optimization uses AdamW [21] with a learning
rate between 5 and 1e~* and a 1 cycle schedule [37].

4.2. Quantitative Evaluation

Datasets. We evaluate VL performance of our method on
both indoor and outdoor datasets. For indoor scenes, we
adopt the Indoor-6 dataset [9], which is a relatively large
indoor dataset [9]. It comprises calibrated images from
6 multi-rooms indoor scenes captured over several days,
leading to challenging VL. For outdoor scenes, the Map-
Free [1] dataset is employed. We use its first 10 scenes,
500000 ~ s00009, following [4]. Each scene contains im-
ages from two scans of an outdoor location. We split them
into mapping and query sets. The ground truth camera poses
are computed via SfTM method [34].

Indoor Visual Localization. Firstly, the indoor VL exper-
iments are conducted using the Indoor-6 dataset. In the
experiments, we compare our DIMM method and its varia-
tion enhanced by RANSAC (DIMM-R) with both APR [15]
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Scene SCR APR CRR
(°/em/%) DSAC*[3] ACE[4] marepo[6]  marepog[6] DIMM DIMM-R
Throughput (fps) 17.9 17.9 55.6 55.6 57.7 20.1
s00000 1.2/5.1/55.8  0.7/4.2/62.6  0.6/3.6/69.2 0.6/3.2/70.7 0.7/2.0/93.1  0.6/2.0/94.0
s00001 0.8/2.4/94.5 0.4/1.5/100  0.9/1.8/96.0 0.8/1.6/99.2 1.1/1.6/96.8  1.1/1.6/96.8
s00002 0.8/2.4/69.5  0.5/2.1/77.7  0.6/2.3/77.1 0.5/2.1/78.2 0.9/3.7/71.2  0.9/3.0/77.1
s00003 0.6/2.1/75.8  0.4/2.4/73.6  0.9/2.5/80.3 0.8/2.1/84.5 0.6/2.4/92.8  0.6/2.2/93.3
s00004 1.1/6.3/40.4  0.7/5.8/45.3  0.8/5.3/45.9 0.7/5.1/47.6 0.7/2.4/82.6  0.7/2.3/96.2
s00005 0.7/3.6/64.4  0.5/2.4/73.3  0.7/2.7/72.2 0.5/2.6/77.3 0.8/2.5/86.2  0.8/2.1/87.9
s00006 1.0/4.4/53.4  0.8/4.5/54.8  0.8/4.2/58.5 0.6/3.6/63.8 0.8/5.6/44.3  0.8/3.9/64.8
s00007 0.7/7.8/16.9  0.6/7.6/19.0  1.0/6.3/25.1 0.8/6.1/27.5 0.6/3.6/69.5  0.5/3.5/71.1
s00008 1.2/3.5/68.9  0.7/3.1/71.6  0.7/2.3/77.4 0.7/1.9/82.8 0.7/2.7/85.1  0.7/2.4/87.9
s00009 0.8/3.1/81.2  0.4/1.2/99.7 0.8/1.8/94.9 0.9/1.6/95.1 0.7/1.3/97.7  0.7/1.2/97.4
Average 0.8/4.1/62.1  0.6/3.5/67.7  0.8/3.3/69.7 0.7/3.0/72.7 0.8/2.8/81.9  0.7/2.4/86.6

Table 3. Pose accuracy comparison on the outdoor MapFree [1] dataset. We report the median errors in degree (°) for the orientation,
cm for the position, and recall at S5cm/5°. The best results, the second best and our results are highlighted.

Recall-5°/5¢cm (%)~ s00000 s00001 s00002 s00003 s00004 s00005  Average

ACE [4] 62.6 100 71.7 73.6 453 733 72.1
DIMM-CRR (Ours)  93.1 96.8 71.2 92.8 82.6 86.2 87.1
DIMM-SCR 64.8 98.6 74.5 71.3 482 72.1 72.6
DIMM-APR 32 12.4 57 3.6 03 2.6 4.6

Table 4. Ablation Results about Camera Ray Regression (CRR).
We evaluate three variations of our model to showcase the effective-
ness of CRR, by modifying output to different VL formulations.

and SCR [3-5, 9, 20] approaches. The results are reported
in Tab. 2. Additionally, we analyzed the corresponding
mapping time and memory costs of various VL. methods in
Tab. 1, for a comprehensive comparison. DIMM demon-
strates better or comparable performance than the previous
state-of-the-art, e.g., achieving a recall@5°/5cm of 78.3 in
scene6. Moreover, our method achieves generally better re-
sults than EGFS-q with “hard” multi-mapper combination,
proving the efficacy of our “soft” mapper ensemble utilizing
semantic guidance. The effectiveness of RC-RANSAC is
also highlighted by a substantial precision improvement in
scene2a from 66.7 to 77.4. Overall, the proposed DIMM-R
achieves the best average recall in this dataset. Furthermore,
our method enables mapping with reduced computational
costs compared to D2S and is trained without 3D supervi-
sion, as illustrated in Tab. 1. These findings underscore the
potential of our CRR-based method as a promising VL im-
plementation. Some visualization results of DIMM can be
found in Fig. 4 and Fig. 7 in the Suppl., where the 3D scene
structure is preserved, demonstrating the privacy protection
offered by our method.

Outdoor Visual Localization. Our outdoor VL experiments
are conducted on the Map-Free Dataset. In addition to the
SCR-based ACE and DSAC*, we also compared the recent
APR-based method, marepo [6], and its fine-tuned variation,
marepog. The results, including median errors for rotation
(°) and translation (¢m), as well as localization recalls at
5cm/5°, are presented in Tab. 3. These results also come
from methods with mapping time in Tab. 1. From the table,

Feature Encoder Med. R Err. (°) Med. t Err. (cm) Recall-5°/5cm

Ti ® Ticts) @ Ty, 0.8 5.6 43
T @ Ts) ® Ty, 0.8 6.0 39.7
Ti ®Ta 411 ®Tyy, L1 8.3 19.7
Ti @ Tiers) @ XY 0.9 7.6 27.2
T @ Ticws) 0.9 74 26.8
T 1.1 115 17.2

Table 5. Ablation Study about our Feature Encoder. The experi-
ments are performed on the MapFree s00006 dataset.

it is evident that our methods achieve the best overall results,
outperforming both SCR and APR methods. The rotation
accuracy of ACE, yet, surpasses our methods, indicating that
local ambiguity poses a significant challenge for CRR meth-
ods and obtaining precise ray directions from image patches
is challenging. However, it is observed that CRR methods
facilitate better camera center estimation compared to APR
and SCR methods. This improvement can be attributed to the
fact that the camera center location integrates contributions
from all camera rays, and the bounded ray error [27] en-
hances the robustness of the center estimation against noise.
The efficacy of RC-RANSAC algorithm can also be verified
in the table, as it leads to substantial improvements of VL
performance, e.g., 44.3 — 64.8 of recall in s00006. Fur-
thermore, we investigate the computational efficiency of our
methods. The throughputs (fps) of all methods are reported
in the table, revealing that the lightweight network and linear
pose solver of DIMM achieve the best inference efficiency.

4.3. Ablation Experiments

Camera Ray Regression. One of our main contributions
in this work is introducing Camera Ray Regression (CRR)
into the VL task. Thus, we provide ablation study about
this formulation in Tab. 4. In particular, we modify the last
layer of DIMM to output scene coordinates (DIMM-SCR)
or direct camera pose (DIMM-APR), and train these vari-
ations separately. The DIMM-SCR is trained with GDT,
same as ACE[4]. The DIMM-APR, on the other hand, is
trained in image level, as the direct pose vectors cannot
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Mapper Attentlon Bar on the Bottom of Each Image.

Figure 5. Visualization results of sub-mapper attention score.
In the experiments, we observed that specific semantic entities
elicit responses from different mappers. For instance, the fireplace
at the top of the figure frequently results in high attention scores
from mapper #3, while mapper #2 exhibits a low attention score.
Conversely, mapper #3 seems do not “care” the sofa at the bottom,
which leads to high scores of mapper #2 instead.

be assigned to image patches. The experiments are per-
formed on the MapFree dataset, with the localization recall
reported. In Tab. 4, we can see that our CRR formulation
significantly outperforms the SCR and APR under the same
network architecture, indicating the contribution of our ray-
parameterization. DIMM-SCR overcomes ACE slightly in
average, but our model is tailored for CRR. DIMM-APR
utilizes per-scene pose regression and achieves poor results,
but this is consistent with the results in marepo [6]. This
suggests the APR model may require much larger datasets
to learn pose patterns. Overall, the results in Tab. 4 evaluate
our main contribution: CRR formulation in VL.

Feature Encoder. Based on our analysis of CRR, we require
patch features to exhibit strong local description while also
incorporating global perception and image position encod-
ing to achieve disambiguation. To validate this, we conduct
experiments on the MapFree s00006 dataset (cf. Tab. 5).
Specifically, we modify the content of the patch feature, in-
cluding features w/o global perception and image position
encoding (7; @ TicLs) and 7T;), to compare with the proposed
version (7; ® TicLs) ® Txy,). Also, we investigate the effi-
cacy of DINO fine-tuning, and the performance of original
DINO (7;" ® T ¢y ) @ Txy,) is also reported. It is evident that
global perception with image position encoding are crucial
for CRR, leading to a significant accuracy improvement. The
fine-tuning of DINO also improves the performance as well
(39.7 vs. 44.3). Visualization comparison about the global
perception is presented in Fig. 4. We can see the proposed
global perception enables the learning of ray geometry, caus-
ing the rays to converge toward the camera center, thereby
enhancing precision. We also conduct experiments for a
variation without Fourier Encoding (7; ® TjcLs) @ XY;). The
results in the first and third rows of Tab. 5 show that Fourier
Encoding effectively prevents the submergence of positional

Atten. Num. Med. R Err. (°) Med. t Err. (cm) Recall@5°/5cm — size (MB)

0! 1.0 72 31.0 12.1
2 0.9 58 42.6 14.2
4 0.8 5.6 4.3 16.2
6 0.8 6.3 377 182
8 1.1 7.7 30.4 20.2

! Take average of the sub-mapper embeddings, eliminating attention layers.

Table 6. Ablation Study about the Number of Semantic At-
tention Layers. The experiments are performed on the MapFree
500006 dataset. The efficacy of our semantic attention is evaluated.

features. Finally, we explore another possible global percep-
tion way provided by [41] (7; ® Ta @ Tyy,), the feature for
image retrieval. The results show that the replaced global
feature fails to match the original efficacy, possibly because
DINO’s global feature is more compatible with its own local
patch features, facilitating subsequent mapping learning.

Mapper Head. In the same scene, we also conduct abla-
tion experiments on the network structure of the Mapper
Head. We first validate the efficacy of the semantic attention
module and experiment with its number of layers. When
the layer number is set to 0, we directly take the average
of output from multiple sub-mappers. The results are pre-
sented in Tab. 6, containing median rotation/translation error,
localization recall and model size. It is evident that utiliz-
ing semantic attention is more effective compared to simple
average fusion, and the increase in network size is deemed
acceptable. Additional ablation study about the MLP map-
pers can be found in Suppl. B. To showcase the effectiveness
of the soft mapper assemble, we visualize some query im-
ages combined with their sub-mapper attention scores in
Fig. 5. It can be observed that different sub-mappers get
high attention scores to different objects in images. This
indicates that our semantic attention mechanism allows the
sub-mappers to “remember” specific semantic objects.

5. Conclusion

In this work, we propose regressing camera rays to perform
visual localization. This overparameterized representation of
camera model leads to high precision, and, more importantly,
enhances privacy protection. In particular, we introduce
DIMM as a learning model to regress camera rays from im-
ages. It utilizes DINO as a scene-agnostic encoder to output
features that incorporate both local and global perception. A
scene-specific mapper then regresses ray parameters from
the features, involving a semantic attention module to merge
results from multiple mappers. Finally, a ray-level RANSAC
algorithm is proposed to improve the ray-to-pose accuracy.
In experiments on both indoor and outdoor datasets, our
methods demonstrate comparable or superior performance
to current approaches, while ensuring privacy preservation.
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